Cor Vasa 2024, 66(1):44-51 | DOI: 10.33678/cor.2023.080

How to invasively assess left ventricular function and its efficiency of work

Lukáš Povišer, Karol Čurila
Cardiocenter, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, the Czech Republic

Effective performance of the left ventricle requires the maintenance of a cardiac output as demanded by the systemic circulation without a high hemodynamic cost or pressure and without a high metabolic cost or oxygen demand by the left ventricular myocardium. In this article the left ventricle is considered as a pump and performance is based on evaluation of measurements of its pressure, volumes, and flow. Analysis of ventricular function in terms of pressure-volume relationships allows global and regional ventricular dynamics to be fully analyzed and relatively easily and precisely obtained with conductance catheter. The maximum rate of left ventricular pressure is classically considered as a marker of left ventricular contractility and in specific situation arterial dP/dtmax, as minimally invasive method, can be an alternative. When assessing new pacing techniques and cardiac resynchronization therapy, invasive systolic blood pressure appears to be the most practical measure with multi-beat averaging and the addition of multiple spaced repeated alternations.

Keywords: Cardiac function, dP/dtmax, Hemodynamics, Performance of heart, Stroke work

Received: September 20, 2023; Revised: October 22, 2023; Accepted: October 24, 2023; Prepublished online: June 2, 2012; Published: March 5, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Povišer L, Čurila K. How to invasively assess left ventricular function and its efficiency of work. Cor Vasa. 2024;66(1):44-51. doi: 10.33678/cor.2023.080.


This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Licence (CC BY 4.0


Download citation

References

  1. Geyer H, Caracciolo G, Abe H, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 2010;23:351-455. Erratum in: J Am Soc Echocardiogr 2010;23:734. Go to original source... Go to PubMed...
  2. Monahan-Earley R, Dvorak AM, Aird WC. Evolutionary origins of the blood vascular system and endothelium. J Thromb Haemost 2013;11(Suppl 1):46-66. Go to original source... Go to PubMed...
  3. Chengode S. Left ventricular global systolic function assessment by echocardiography. Ann Card Anaesth 2016;19(Suppl):S26-S34. Go to original source... Go to PubMed...
  4. Mitchell JH, Hefner LL, Monroe RG. Performance of the left ventricle. Am J Med 1972;53:481-494. Go to original source... Go to PubMed...
  5. Lewis AJM, Foley P, Whinnett Z, et al. His Bundle Pacing: A New Strategy for Physiological Ventricular Activation. J Am Heart Assoc 2019;8:e010972. Erratum in: J Am Heart Assoc 2019;8:e002310. Go to original source... Go to PubMed...
  6. Baicu CF, Zile MR, Aurigemma GP, Gaasch WH. Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation 2005;111:2306-2312. Go to original source... Go to PubMed...
  7. Jentzer JC, Wiley BM, Anavekar NS. Echocardiographic left ventricular stroke work index: An integrated noninvasive measure of shock severity. PLoS One 2022;17:e0262053. Go to original source... Go to PubMed...
  8. Settergren G. The calculation of left ventricular stroke work index. Acta Anaesthesiol Scand 1986;30:450-452. Go to original source... Go to PubMed...
  9. Boldt J. Clinical review: hemodynamic monitoring in the intensive care unit. Crit Care 2002;6:52-59. Go to original source... Go to PubMed...
  10. Maeder MT, Rickli H, Weber L, et al. Systemic blood pressure in severe aortic stenosis: Haemodynamic correlates and long-term prognostic impact. ESC Heart Fail 2023;10:274-283. Go to original source... Go to PubMed...
  11. Stephens JD, Dymond DS, Spurrell RA. Radionuclide and hemodynamic assessment of left ventricular functional reserve in patients with left ventricular aneurysm and congestive cardiac failure. Response to exercise stress and isosorbide dinitrate. Circulation 1980;61:536-542. Go to original source... Go to PubMed...
  12. Ross J Jr, Braunwald E. The study of left ventricular function in man by increasing resistance to ventricular ejection with angiotensin. Circulation 1964;29:739-749. Go to original source... Go to PubMed...
  13. Boudoulas KD, Triposkiadis F, Boudoulas H. Evaluation of Left Ventricular Performance: Is There a Gold Standard?. Cardiology 2018;140:257-261. Go to original source... Go to PubMed...
  14. Bastos MB, Burkhoff D, Maly J, et al. Invasive left ventricle pressure-volume analysis: overview and practical clinical implications. Eur Heart J 2020;41:1286-1297. Go to original source... Go to PubMed...
  15. Boldt J. Clinical review: hemodynamic monitoring in the intensive care unit. Crit Care 2002;6:52-59. Go to original source... Go to PubMed...
  16. Aurigemma GP, Zile MR, Gaasch WH. Contractile behavior of the left ventricle in diastolic heart failure: with emphasis on regional systolic function. Circulation 2006;113:296-304. Go to original source... Go to PubMed...
  17. Moss RL, Fitzsimons DP. Frank-Starling relationship: long on importance, short on mechanism. Circ Res 2002;90:11-13. Go to original source...
  18. Starling EH, Visscher MB. The regulation of the energy output of the heart. J Physiol 1927;62:243-261. Go to original source... Go to PubMed...
  19. Suga H. Ventricular energetics. Physiol Rev 1990;70:247-277. Go to original source... Go to PubMed...
  20. Chen CH, Fetics B, Nevo E, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 2001;38:2028-2034. Go to original source... Go to PubMed...
  21. Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation 1981;63:1223-1227. Go to original source... Go to PubMed...
  22. Starling MR, Gross MD, Walsh RA, et al. Radionuclide determination of the relationship between left ventricular contractile state and ejection fraction. Am Heart J 1988;116:790-798. Go to original source... Go to PubMed...
  23. Redington AN, Gray HH, Hodson ME, et al. Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements. Br Heart J 1988;59:23-30. Go to original source... Go to PubMed...
  24. Baan J, van der Velde ET, de Bruin HG, et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 1984;70:812-823. Go to original source... Go to PubMed...
  25. Foëx P, Leone BJ. Pressure-volume loops: a dynamic approach to the assessment of ventricular function. J Cardiothorac Vasc Anesth 1994;8:84-96. Go to original source... Go to PubMed...
  26. Kass DA, Midei M, Graves W, et al. Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure-volume relationships in man. Cathet Cardiovasc Diagn 1988;15:192-202. Go to original source... Go to PubMed...
  27. Monge García MI, Jian Z, Hatib F, et al. Relationship between intraventricular mechanical dyssynchrony and left ventricular systolic and diastolic performance: An in vivo experimental study. Physiol Rep 2023;11:e15607. Go to original source... Go to PubMed...
  28. Burkhoff D, van der Velde E, Kass D, Baan J, et al. Accuracy of volume measurement by conductance catheter in isolated, ejecting canine hearts. Circulation 1985;72:440-447. Go to original source... Go to PubMed...
  29. McKay RG, Spears JR, Aroesty JM, et al. Instantaneous measurement of left and right ventricular stroke volume and pressure-volume relationships with an impedance catheter. Circulation 1984;69:703-710. Go to original source... Go to PubMed...
  30. Kass DA, Yamazaki T, Burkhoff D, et al. Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation 1986;73:586-595. Go to original source... Go to PubMed...
  31. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 1983;245(5 Pt 1):H773-H780. Go to original source... Go to PubMed...
  32. Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the loading system. Ann Biomed Eng 1984;12:163-189. Go to original source... Go to PubMed...
  33. Monge Garcia MI, Jian Z, Settels JJ, et al. Reliability of effective arterial elastance using peripheral arterial pressure as surrogate for left ventricular end-systolic pressure. J Clin Monit Comput 2019;33:803-813. Go to original source... Go to PubMed...
  34. Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 1985;56:586-595. Go to original source... Go to PubMed...
  35. Wilcken DE, Charlier AA, Hoffman JI, Guz A. Effects of alteration in aortic impedance on the performance of the ventricles. Circ Res 1964;14:283-293. Go to original source... Go to PubMed...
  36. Little WC, Cheng CP. Left ventricular-arterial coupling in conscious dogs. Am J Physiol 1991;261(1 Pt 2):H70-H76. Go to original source... Go to PubMed...
  37. Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol 1986;250(6 Pt 2):R1021-R1027. Go to original source... Go to PubMed...
  38. Suga H, Hayashi T, Shirahata M, et al. Regression of cardiac oxygen consumption on ventricular pressure-volume area in dog. Am J Physiol 1981;240:H320-H325. Go to original source... Go to PubMed...
  39. Starling MR, Mancini GB, Montgomery DG, Gross MD. Relation between maximum time-varying elastance pressure-volume areas and myocardial oxygen consumption in dogs. Circulation 1991;83:304-314. Go to original source... Go to PubMed...
  40. Baicu CF, Zile MR, Aurigemma GP, Gaasch WH. Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation 2005;111:2306-2312. Go to original source... Go to PubMed...
  41. Carabello BA. Evolution of the study of left ventricular function: everything old is new again. Circulation 2002;105:2701-2703. Go to original source... Go to PubMed...
  42. Quinones MA, Gaasch WH, Alexander JK. Influence of acute changes in preload, afterload, contractile state and heart rateon ejection and isovolumic indices of myocardial contractility in man. Circulation 1976;53:293-302. Go to original source... Go to PubMed...
  43. Anand IS, Liu D, Chugh SS, et al. Isolated myocyte contractile function is normal in postinfarct remodeled rat heart with systolic dysfunction. Circulation 1997;96:3974-3984. Go to original source... Go to PubMed...
  44. Anand IS. Ventricular remodeling without cellular contractile dysfunction. J Card Fail 2002;8(6 Suppl):S401-S408. Go to original source... Go to PubMed...
  45. Norton GR, Woodiwiss AJ, Gaasch WH, et al. Heart failure in pressure overload hypertrophy. The relative roles of ventricular remodeling and myocardial dysfunction. J Am Coll Cardiol 2002;39:664-671. Go to original source... Go to PubMed...
  46. Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014;40:1795-1815. Go to original source... Go to PubMed...
  47. Vieillard-Baron A. Septic cardiomyopathy. Ann Intensive Care 2011;1:6. Go to original source... Go to PubMed...
  48. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 1974;35:117-126. Go to original source... Go to PubMed...
  49. Wallace AG, Skinner NS Jr, Mitchell JH. Hemodynamic determinants of the maximal rate of rise of left ventricular pressure. Am J Physiol 1963;205:30-36. Go to original source... Go to PubMed...
  50. Tartiere JM, Logeart D, Beauvais F, et al. Non-invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. Eur J Heart Fail 2007;9:477-483. Go to original source... Go to PubMed...
  51. De Hert SG, Robert D, Cromheecke S, et al. Evaluation of left ventricular function in anesthetized patients using femoral artery dP/dt(max). J Cardiothorac Vasc Anesth 2006;20:325-330. Go to original source... Go to PubMed...
  52. Morimont P, Lambermont B, Desaive T, et al. Arterial dP/dtmax accurately reflects left ventricular contractility during shock when adequate vascular filling is achieved. BMC Cardiovasc Disord 2012;12:13. Go to original source... Go to PubMed...
  53. Monge Garcia MI, Jian Z, Settels JJ, et al. Performance comparison of ventricular and arterial dP/dtmax for assessing left ventricular systolic function during different experimental loading and contractile conditions. Crit Care 2018;22:325. Go to original source... Go to PubMed...
  54. Ostadal P, Vondrakova D, Krüger A, et al. Continual measurement of arterial dP/dtmax enables minimally invasive monitoring of left ventricular contractility in patients with acute heart failure. Crit Care 2019;23:364. Go to original source... Go to PubMed...
  55. Scolletta S, Bodson L, Donadello K, et al. Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Med 2013;39:1025-1033. Go to original source... Go to PubMed...
  56. Vaquer S, Chemla D, Teboul JL, et al. Influence of changes in ventricular systolic function and loading conditions on pulse contour analysis-derived femoral dP/dtmax. Ann Intensive Care 2019;9:61. Go to original source... Go to PubMed...
  57. Ali N, Shin MS, Whinnett Z. The Emerging Role of Cardiac Conduction System Pacing as a Treatment for Heart Failure. Curr Heart Fail Rep 2020;17:288-298. Go to original source... Go to PubMed...
  58. Padeletti L, Pieragnoli P, Ricciardi G, et al. Simultaneous His Bundle and Left Ventricular Pacing for Optimal Cardiac Resynchronization Therapy Delivery: Acute Hemodynamic Assessment by Pressure-Volume Loops. Circ Arrhythm Electrophysiol 2016;9:e003793. Go to original source... Go to PubMed...
  59. Arnold AD, Shun-Shin MJ, Keene D, et al. His Resynchronization Versus Biventricular Pacing in Patients With Heart Failure and Left Bundle Branch Block. J Am Coll Cardiol 2018;72:3112-3122. Go to original source... Go to PubMed...
  60. Shun-Shin MJ, Miyazawa AA, Keene D, et al. How to deliver personalized cardiac resynchronization therapy through the precise measurement of the acute hemodynamic response: Insights from the iSpot trial. J Cardiovasc Electrophysiol 2019;30:1610-1619. Go to original source... Go to PubMed...
  61. Buchner T. A quantitative model of relation between respiratory-related blood pressure fluctuations and the respiratory sinus arrhythmia. Med Biol Eng Comput 2019;57:1069-1078. Go to original source... Go to PubMed...
  62. Miyazawa AA, Francis DP, Whinnett ZI. Basic Principles of Hemodynamics in Pacing. Card Electrophysiol Clin 2022;14:133-140. Go to original source... Go to PubMed...
  63. Whinnett ZI, Davies JE, Nott G, et al. Efficiency, reproducibility and agreement of five different hemodynamic measures for optimization of cardiac resynchronization therapy. Int J Cardiol 2008;129:216-226. Go to original source... Go to PubMed...




Cor et Vasa

You are accessing a site intended for medical professionals, not the lay public. The site may also contain information that is intended only for persons authorized to prescribe and dispense medicinal products for human use.

I therefore confirm that I am a healthcare professional under Act 40/1995 Coll. as amended by later regulations and that I have read the definition of a healthcare professional.