Cor Vasa 2022, 64(6):628-636 | DOI: 10.33678/cor.2022.044

(Modern ideas about the mechanisms of cardiac troponin release and their diagnostic role)

Aleksey M. Chaulina, b, Dmitry V. Duplyakova, b
a "Samarská regionální klinická kardiologická léčebna", Státní rozpočtový ústav zdravotní péče, Samara, Rusko
b "Samarská státní lékařská univerzita", Federální státní rozpočtová vzdělávací instituce Ministerstva zdravotnictví Ruska, Samara, Rusko

The main mechanism of cardiac troponin release (cTnT and cTnI) proven to date is ischemic necrosis of myocardial cells, which leads to the release of all intracellular molecules, including cTnT and cTnI into the bloodstream in acute myocardial infarction (AMI). However, in real clinical practice, doctors very often encounter many other (besides AMI) pathological conditions in which cTnT and cTnI concentrations in the bloodstream are elevated, but signs of myocardial ischemia are not observed. This clearly indicates the existence of other (non-ischemic) mechanisms of cardiomyocyte damage and the release of cTnT and cTnI into the bloodstream. Understanding all the mechanisms of cardiac troponin release will improve the diagnosis and differential diagnosis of AMI, expand the scope of cTnT and cTnI (for the diagnosis and stratification of risk in other diseases that have a negative impact on myocardial cells). This review systematizes up-to-date information on the mechanisms of cardiac troponin release, discusses in detail the diagnostic role of individual mechanisms of cTnT and cTnI release.

Keywords: Acute myocardial infarction, Cardiac troponins, Diagnosis, Release mechanisms,

Received: February 23, 2022; Revised: February 23, 2022; Accepted: April 24, 2022; Published: December 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Chaulin AM, Duplyakov DV. (Modern ideas about the mechanisms of cardiac troponin release and their diagnostic role). Cor Vasa. 2022;64(6):628-636. doi: 10.33678/cor.2022.044.
Download citation

References

  1. Ohtsuki I. Troponin: structure, function and dysfunction. Adv Exp Med Biol 2007;592:21-36. Go to original source... Go to PubMed...
  2. Chaulin AM, Duplyakov DV. Cardiac troponins: current data on the diagnostic value and analytical characteristics of new determination methods. Cor Vasa 2021;63:486-493. Go to original source...
  3. Jakubo V, Ondrúš T, Beňovská M, et al. Overview and application of validated algorithms using high-sensitivity cardiac troponin assays for early diagnosis of acute myocardial infarction. Cor Vasa 2021;63:703-709. Go to original source...
  4. Chaulin A. Clinical and Diagnostic Value of Highly Sensitive Cardiac Troponins in Arterial Hypertension. Vasc Health Risk Manag 2021;17:431-443. Go to original source... Go to PubMed...
  5. Chaulin AM. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 1. Life (Basel) 2021;11:914. Go to original source... Go to PubMed...
  6. Chaulin AM. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 2. Life (Basel) 2021;11:1175. Go to original source... Go to PubMed...
  7. Thygesen K, Alpert JS, Jaffe AS, et al; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Glob Heart 2018;13:305-338. Go to original source... Go to PubMed...
  8. Wu W, Li DX, Wang Q, et al. Relationship between high-sensitivity cardiac troponin T and the prognosis of elderly inpatients with non-acute coronary syndromes. Clin Interv Aging 2018;13:1091-1098. Go to original source... Go to PubMed...
  9. Lindner G, Pfortmueller CA, Braun CT, Exadaktylos AK. Non-acute myocardial infarction-related causes of elevated high-sensitive troponin T in the emergency room: a cross-sectional analysis. Intern Emerg Med 2014;9:335-339. Go to original source... Go to PubMed...
  10. Collet JP, Thiele H, Barbato E, et al.; ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021;42:1289-1367. Go to original source... Go to PubMed...
  11. Chaulin AM, Abashina OE, Duplyakov DV. High-sensitivity cardiac troponins: detection and central analytical characteristics. Cardiovascular Therapy and Prevention 2021;20:2590. (In Russian) Go to original source...
  12. Ziebig R, Lun A, Hocher B, et al. Renal elimination of troponin T and troponin I. Clin Chem 2003;49:1191-1193. Go to original source... Go to PubMed...
  13. Chen JY, Lee SY, Li YH, et al. Urine High-Sensitivity Troponin I Predict Incident Cardiovascular Events in Patients with Diabetes Mellitus. J Clin Med 2020;9:3917. Go to original source... Go to PubMed...
  14. Chaulin AM, Karslyan LS, Grigorieva EV, et al. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia 2019;59:66-75. (In Russian) Go to original source... Go to PubMed...
  15. Chaulin AM, Duplyakova PD, Bikbaeva GR, et al. Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: a pilot study. Russian Journal of Cardiology 2020;25:3814. Go to original source...
  16. Monneret D, Gellerstedt M, Bonnefont-Rousselot D. Determination of age- and sex-specific 99th percentiles for high-sensitive troponin T from patients: an analytical imprecision- and partitioning-based approach. Clin Chem Lab Med 2018;56:818-829. Go to original source... Go to PubMed...
  17. Chaulin AM. Main analytical characteristics of laboratory methods for the determination of cardiac troponins: a review from the historical and modern points of view. Orv Hetil 2022;163:12-20. Go to original source... Go to PubMed...
  18. Chaulin AM, Duplyakov DV. High-sensitivity cardiac troponins: circadian rhythms. Cardiovascular Therapy and Prevention 2021;20:2639. (In Russian) Go to original source...
  19. Chaulin AM, Duplyakova PD, Duplyakov DV. Circadian rhythms of cardiac troponins: mechanisms and clinical significance. Russian Journal of Cardiology 2020;25(3S):4061. Go to original source...
  20. Liao XD, Wang XH, Jin HJ, et al. Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts. Cell Res 2004;14:16-26. Go to original source... Go to PubMed...
  21. Felker GM, Fudim M. Unraveling the Mystery of Troponin Elevation in Heart Failure. J Am Coll Cardiol 2018;71:2917-2918. Go to original source... Go to PubMed...
  22. Communal C, Colucci WS. The control of cardiomyocyte apoptosis via the beta-adrenergic signaling pathways. Arch Mal Coeur Vaiss 2005;98:236-241. Go to PubMed...
  23. Chen QM, Tu VC. Apoptosis and heart failure: mechanisms and therapeutic implications. Am J Cardiovasc Drugs 2002;2:43-57. Go to original source... Go to PubMed...
  24. Ricchiuti V, Apple FS. RNA expression of cardiac troponin T isoforms in diseased human skeletal muscle. Clin Chem 1999;45:2129-2135. Go to original source...
  25. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science 2009;324:98-102. Go to original source... Go to PubMed...
  26. Derks W, Bergmann O. Polyploidy in Cardiomyocytes: Roadblock to Heart Regeneration? Circ Res 2020;126: 552-565. Go to original source... Go to PubMed...
  27. White HD. Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol 2011;57:2406-2408. Go to original source... Go to PubMed...
  28. Docshin PM, Karpov AA, Eyvazova SD, et al. Activation of Cardiac Stem Cells in Myocardial Infarction. Tsitologiya 2018;60:81-88. (In Russian) Go to original source...
  29. Waring CD, Vicinanza C, Papalamprou A, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. Eur Heart J 2014;35:2722-2731. Go to original source... Go to PubMed...
  30. Rovira M, Borràs DM, Marques IJ, et al. Physiological Responses to Swimming-Induced Exercise in the Adult Zebrafish Regenerating Heart. Front Physiol 2018;9:1362. Go to original source... Go to PubMed...
  31. Isomi M, Sadahiro T, Ieda M. Progress and Challenge of Cardiac Regeneration to Treat Heart Failure. J Cardiol 2019;73:97-101. Go to original source... Go to PubMed...
  32. Zhang Q, Yu N, Yu BT. MicroRNA-298 regulates apoptosis of cardiomyocytes after myocardial infarction. Eur Rev Med Pharmacol Sci 2018;22:532-539. Go to PubMed...
  33. Weil BR, Young RF, Shen X, et al. Brief Myocardial Ischemia Produces Cardiac Troponin I Release and Focal Myocyte Apoptosis in the Absence of Pathological Infarction in Swine. JACC Basic Transl Sci 2017;2:105-114. Go to original source... Go to PubMed...
  34. Cheng W, Li B, Kajstura J, et al. Stretch-induced programmed myocyte cell death. J Clin Invest 1995;96:2247-2259. Go to original source... Go to PubMed...
  35. Weil BR, Suzuki G, Young RF, et al. Troponin Release and Reversible Left Ventricular Dysfunction After Transient Pressure Overload. J Am Coll Cardiol 2018;71:2906-2916. Go to original source... Go to PubMed...
  36. El-Menyar A, Sathian B, Al-Thani H. Elevated serum cardiac troponin and mortality in acute pulmonary embolism: Systematic review and meta-analysis. Respir Med 2019;157:26-35. Go to original source... Go to PubMed...
  37. Daquarti G, March Vecchio N, Mitrione CS, et al. High-sensitivity troponin and right ventricular function in acute pulmonary embolism. Am J Emerg Med 2016;34:1579-1582. Go to original source... Go to PubMed...
  38. Stone IS, Petersen SE, Barnes NC. Raised troponin in COPD: clinical implications and possible mechanisms. Heart 2013;99:71-72. Go to original source... Go to PubMed...
  39. Stavroulakis GA, George KP. Exercise-induced release of troponin. Clin Cardiol 2020;43:872-881. Go to original source... Go to PubMed...
  40. Singh K, Communal C, Sawyer DB, Colucci WS. Adrenergic regulation of myocardial apoptosis. Cardiovasc Res 2000;45:713-719. Go to original source... Go to PubMed...
  41. Xiao RP, Tomhave ED, Wang DJ, et al. Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest 1998;101:1273-1282. Go to original source... Go to PubMed...
  42. de Lucia C, Eguchi A, Koch WJ. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front Pharmacol 2018;9:904. Go to original source... Go to PubMed...
  43. Hickman PE, Abhayaratna WP, Potter JM, Koerbin G. Age-related differences in hs-cTnI concentration in healthy adults. Clin Biochem 2019;69:26-29. Go to original source... Go to PubMed...
  44. Kuster N, Monnier K, Baptista G, et al. Estimation of age- and comorbidities-adjusted percentiles of high-sensitivity cardiac troponin T levels in the elderly. Clin Chem Lab Med 2015;53:691-698. Go to original source... Go to PubMed...
  45. Schwartz P, Piper HM, Spahr R, Spieckermann PG. Ultrastructure of cultured adult myocardial cells during anoxia and reoxygenation. Am J Pathol 1984;115:349-361.
  46. Siegmund B, Koop A, Klietz T, et al. Sarcolemmal integrity and metabolic competence of cardiomyocytes under anoxia-reoxygenation. Am J Physiol 1990;258(2 Pt 2):H285-H291. Go to original source... Go to PubMed...
  47. Sheyin O, Davies O, Duan W, Perez X. The prognostic significance of troponin elevation in patients with sepsis: a meta-analysis. Heart Lung 2015;44:75-81. Go to original source... Go to PubMed...
  48. Chen Y, Tao Y, Zhang L, et al. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgrad Med J 2019;95:210-216. Go to original source... Go to PubMed...
  49. Feng J, Schaus BJ, Fallavollita JA, et al. Preload induces troponin I degradation independently of myocardial ischemia. Circulation. 2001;103:2035-2037. Go to original source... Go to PubMed...
  50. Lin NN, Cheng CC, Lee YF, et al. Early activation of myocardial matrix metalloproteinases and degradation of cardiac troponin I after experimental subarachnoid hemorrhage. J Surg Res 2013;179:e41-e48. Go to original source... Go to PubMed...
  51. Katrukha IA, Kogan AE, Vylegzhanina AV, et al. Thrombin-Mediated Degradation of Human Cardiac Troponin T. Clin Chem 2017;63:1094-1100. Go to original source... Go to PubMed...
  52. Ito K, Hongo K, Date T, et al. Tissue thrombin is associated with the pathogenesis of dilated cardiomyopathy. Int J Cardiol 2017;228:821-827. Go to original source... Go to PubMed...
  53. Hessel MH, Atsma DE, van der Valk EJ, et al. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch 2008;455:979-986. Go to original source... Go to PubMed...
  54. Ross RS, Borg TK. Integrins and the myocardium. Circ Res 2001;88:1112-1119. Go to original source... Go to PubMed...
  55. Khabbaz KR, Feng J, Boodhwani M, et al. Nonischemic myocardial acidosis adversely affects microvascular and myocardial function and triggers apoptosis during cardioplegia. J Thorac Cardiovasc Surg 2008;135:139-146. Go to original source... Go to PubMed...
  56. Thatte HS, Rhee JH, Zagarins SE, et al. Acidosis-induced apoptosis in human and porcine heart. Ann Thorac Surg 2004;77:1376-1383. Go to original source... Go to PubMed...
  57. Bakay M, Zhao P, Chen J, Hoffman EP. A web-accessible complete transcriptome of normal human and DMD muscle. Neuromuscul Disord 2002;12(Suppl 1):S125-S141. Go to original source... Go to PubMed...
  58. Messner B, Baum H, Fischer P, et al. Expression of messenger RNA of the cardiac isoforms of troponin T and I in myopathic skeletal muscle. Am J Clin Pathol 2000;114:544-549. Go to original source...
  59. Rusakov DY, Yamshcikov NV, Tulayeva ON, et al. Histogenesis and pecularities of structural organization of the cardiac muscle tissue un the walls of human caval and pulmonary veins. Morphology 2015;148:38-42. (In Russian)
  60. Bodor GS, Porterfield D, Voss EM, et al. Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue. Clin Chem 1995;41(12 Pt 1):1710-1715. Go to original source...
  61. Hammerer-Lercher A, Erlacher P, Bittner R, et al. Clinical and experimental results on cardiac troponin expression in Duchenne muscular dystrophy. Clin Chem 2001;47:451-458. Go to original source...
  62. Schmid J, Liesinger L, Birner-Gruenberger R, et al. Elevated Cardiac Troponin T in Patients With Skeletal Myopathies. J Am Coll Cardiol 2018;71:1540-1549. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.





Cor et Vasa

You are accessing a site intended for medical professionals, not the lay public. The site may also contain information that is intended only for persons authorized to prescribe and dispense medicinal products for human use.

I therefore confirm that I am a healthcare professional under Act 40/1995 Coll. as amended by later regulations and that I have read the definition of a healthcare professional.