Cor Vasa 2021, 63(3):351-358 | DOI: 10.33678/cor.2021.023

(Sex differences in cardiac tolerance to ischemia-reperfusion injury - the role of mitochondria)

Bohuslav Oą»ádala, Zdeněk Drahotaa, Petr Oą»ádalb, Jan Neckářa
a Fyziologický ústav AV ČR, Praha
b Komplexní kardiovaskulární centrum, Nemocnice Na Homolce, Praha

Experimental and clinical studies have clearly demonstrated significant sex differences in myocardial structure and function under normal and pathological conditions. The best examples are significant sex differences in cardiac tolerance to ischemia-reperfusion injury: adult male hearts are more susceptible as compared to pre-menopausal female heart. The importance of these findings is documented by the increasing number of publications on this topic during the last years. Detailed cellular and molecular mechanisms, responsible for sex differences are, unfortunately, still not known; it has been stressed that estrogens are not the only factor involved. Recently, a new hypothesis has been developed, suggesting an important role of cardiac mitochondria. One is clear already today: sex differences are so important that they should be taken into consideration in the clinical practice for the selection of the optimal diagnostic and therapeutic strategy.

Keywords: Estrogen, Heart, Ischemia-reperfusion injury, Mitochondria, Sex differences

Received: January 12, 2021; Revised: January 12, 2021; Accepted: February 7, 2021; Published: July 20, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Oą»ádal B, Drahota Z, Oą»ádal P, Neckář J. (Sex differences in cardiac tolerance to ischemia-reperfusion injury - the role of mitochondria). Cor Vasa. 2021;63(3):351-358. doi: 10.33678/cor.2021.023.
Download citation

References

  1. Leinwand LA. Sex is a potent modifier of the cardiovascular system. J Clin Invest 2003;112:302-307. Go to original source...
  2. Regitz-Zagrosek V. Therapeutic implications of the gender- -specific aspects of cardiovascular disease. Nat Rev Drug Discov 2006;5:425-439. Go to original source... Go to PubMed...
  3. Kolář F, Oą»ádal B. Ex Acta: Sex differences in cardiovascular function. Acta Physiol 2013;207:584-587. Go to original source... Go to PubMed...
  4. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heartdisease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998;280:605-613. Go to original source... Go to PubMed...
  5. Rossouw JE, Anderson GL, Prentice RL, et al. Risk and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 2002;288:321-333. Go to original source... Go to PubMed...
  6. Oą»ádal B, Procházka J, Pelouch V, et al. Comparison of cardiopulmonary responses of male and female rats to intermittent high altitude hypoxia. Physiol Bohemoslov 1984;33:129-138. Go to PubMed...
  7. Tobin JN, Wassertheil-Smoller S, Wexler JP, et al. Sex bias in considering coronary-bypass surgery. Ann Intern Med 1987;107:19-25. Go to original source... Go to PubMed...
  8. Steingart RM, Packer M, Hamm P, et al. Sex differences in the management of coronary artery disease. N Engl J Med 1991;325:226-230. Go to original source... Go to PubMed...
  9. Legato MJ, Colman C. The female heart: the truth about women and coronary artery disease. New York: Prentice Hall, 1991.
  10. Oą»ádal B, Netuka I, Malý J, et al. Gender differences in cardiac ischemic injury and protection-experimental aspects. Exp Biol Med 2009;234:1011-1019. Go to original source... Go to PubMed...
  11. Legato MJ, Leghe JK. Gender and the heart: sex-specific differences in the normal myocardial anatomy and physiology. In: Legato MJ, ed. Principles of gender specific medicine. New York: Elsevier, 2010:151-161. Go to original source...
  12. De Simone G, Devereux RB, Daniels SR, Meyer RA. Gender differences in left ventricular growth. Hypertension 1995;26:979-983. Go to original source... Go to PubMed...
  13. Olivetti G, Giordano G, Corradi D, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol 1995;26:1068-1079. Go to original source... Go to PubMed...
  14. Mallat Z, Fornes P, Costagliola R, et al. Age and gender effect on cardiomyocyte apoptosis in the normal human heart. J Gerontol 2001;56A:M719-M723. Go to original source... Go to PubMed...
  15. Bazett H. An analysis of the time-relations of electrocardiograms. Heart 1920;7:370.
  16. Burke JH, Goldberger JJ, Ehlert FA, et al. Gender differences in heart rate before and after autonomic blockade: evidence against an intrinsic gender effect. Am J Med 1996;100:537-543. Go to original source... Go to PubMed...
  17. Jochmann N, Stangl K, Garbe E, et al. Female-specific aspects in the pharmacotherapy of chronic cardiovascular diseases. Eur Heart J 2005;26:1585-1595. Go to original source... Go to PubMed...
  18. Dubey RK, Oparil S, Imthurn B, Jackson EK. Sex hormones and hypertension. Cardiovasc Res 2002;53:688-708. Go to original source... Go to PubMed...
  19. Machuki JO, Zhang HY, Geng J, et al. Estrogen regulation of cardiac cAMP-L-type Ca2+ channel patway modulates sex differences in basal contraction and responses to β2 AR-mediated stress in left ventricular apical myocytes. Cell Commun Signal 2019;17:1-17. Go to original source... Go to PubMed...
  20. Schwertz DW, Vizgirda V, Solaro RJ, et al. Sexual dimorphism in rat left atrial function and response to adrenergic stimulation. Mol Cell Biochem 1999;200:43-53. Go to original source... Go to PubMed...
  21. Schwertz DW, Beck JM, Kowalski JM, Ross JD. Sex differences in the response of rat ventricle to calcium. Biol Res Nurs 2004;5:286-298. Go to original source... Go to PubMed...
  22. Farell SR, Ross JL, Howlet SE. Sex differences in mechanisms of cardiac excitation-contraction coupling in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2010;299:H36-H45. Go to original source... Go to PubMed...
  23. Colom B, Oliver J, Roca P, Garcia-Palmer FJ. Caloric restriction and gender modulate cardiac muscle mitochondrial H2 O2 production and oxidative damage. Cardiovasc Res 2007;74:456-465. Go to original source... Go to PubMed...
  24. Chu SH, Sutherland K, Beck J, et al. Sex differences in expression of calcium-handling proteins and beta-adrenergic receptors in rat heart ventricle. Life Sci 2005;76:2735-2749. Go to original source... Go to PubMed...
  25. Curl CL, Delbridge LM, Wendt JR. Sex differences in cardiac muscle responsiveness to Ca 2+ and L-type Ca 2+ channel modulation. Eur J Pharmacol 2008;586:288-292. Go to original source... Go to PubMed...
  26. MacDonald JK, Pyle WG, Reitz CJ, Howlett SE. Cardiac contraction, calcium transients, and myofilament calcium sensitivity fluctuate with the estrous cycle in young adultfemale mice. Am J Physiol Heart Circ Physiol 2014;306:H938-H953. Go to original source... Go to PubMed...
  27. Vicencio JM, Ibarra C, Estrada M, et al. Testosterone induces an intracellular calcium increase by a non-genomic mechanism in cultured rat cardiac myocytes. Endocrinology 2006;147:1386-1395. Go to original source... Go to PubMed...
  28. Bae S, Zhang L. Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on Akt and protein kinase C signaling. J Pharmacol Exp Ther 2005;315:1125-1135. Go to original source... Go to PubMed...
  29. Dworatzek E, Baczko I, Kararigas G. Effects of aging on cardiac extracellular matrix in men and women. Proteomics Clin Appl 2016;10:84-91. Go to original source... Go to PubMed...
  30. Duvall WL. Cardiovascular disease in women. Mt Sinai J Med 2003;70:293-305.
  31. Bassuk SS, Manson JE. Gender specific-aspects of selected coronary heart disease risk factors: a summary of the epidemiologic evidence. In: Legato MJ, ed. Principles of Gender-Specific Medicine. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier, 2010:162-174. Go to original source...
  32. Fejfar Z. Prevention against ischaemic heart disease: a critical review. In: Oliver MF, ed. Modern trends in cardiology. London: Butterworths, 1975:465-495.
  33. Mathur P, Oą»ádal B, Romeo F, Mehta JL. Gender-related differences in atherosclerosis. Cardiovasc Drugs Ther 2015; 29:319-327. Go to original source... Go to PubMed...
  34. Oą»ádal P, Oą»ádal B. Women and the management of acute coronary syndrome. Can J Physiol Pharmacol 2012;90:1151-1159. Go to original source... Go to PubMed...
  35. Oą»ádal B, Oą»ádal P. Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. BJP 2014;171:541-554. Go to original source... Go to PubMed...
  36. Oą»ádal B, Drahota Z, Houątěk J, et al. Developmental and sex differences in cardiac tolerance to ischemia-reperfusion injury: the role of mitochondria. Can J Physiol Pharmacol 2019;97:808-814. Go to original source... Go to PubMed...
  37. Oą»ádal B, Oą»ádal P, Neckář J. Sex differences in cardiac ischemia/reperfusion injury. In: Oą»ádal B, Dhalla NS, eds. Sex Differences in Heart Disease. Switzerland: Springer, 2020:25-37. Go to original source...
  38. Murphy E, Steenbergen C. Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res 2007;75:478-486. Go to original source... Go to PubMed...
  39. Booth EA, Lucchesi BR. Estrogen-mediated protection in myocardial ischemia-reperfusion injury. Cardiovasc Toxicol 2008;8:101-113. Go to original source... Go to PubMed...
  40. Ross JL, Howlett SE. Age and ovariectomy abolish beneficial effects of female sex on rat ventricular myocytes exposed to stimulated ischemia and reperfusion. PLoS ONE 2012;7:1-11. Go to original source... Go to PubMed...
  41. Bell JR, Porrello ER, Hugginss CE, et al. The intrinsic resistence of female hearts to an ischemic insult is abrogated in primary cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2008;294:H1514-H1522. Go to original source... Go to PubMed...
  42. Lujan HL, DiCarlo SE. Sex differences to myocardial ischemia and beta-adrenergic receptor blocade in conscious rats. Am J Physiol Heart Circ Physiol 2008;294:H1523-H1529. Go to original source... Go to PubMed...
  43. Przyklenk K, Ovize M, Bauer B, Kloner RA. Gender does not influence acute myocardial infarction in adult dogs. Am Heart J 1995;129:1108-1113. Go to original source... Go to PubMed...
  44. Lagranha CJ, Deschamps A, Aponte A, et al. Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females. Circ Res 2010;106:1681-1691. Go to original source... Go to PubMed...
  45. Cross HR, Lu L, Steenbergen C, et al. Overexpression of the cardiac Na+/Ca2+ exchanger increases susceptibility to ischemia/reperfusion injury in male, but not female, transgenic mice. Circ Res 1998;83:1215-1223. Go to original source... Go to PubMed...
  46. Cross HR, Murphy E, Steenbergen C. Ca2+ loading and adrenergic stimulation reveal male/female differences in susceptibility to ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2002;283:H481-H498. Go to original source... Go to PubMed...
  47. Beąík J, Szarszoi O, Kuneą J, et al. Tolerance to acute ischemia in adult male and female spontaneously hypertensive rats. Physiol Res 2007;56:267-274. Go to original source... Go to PubMed...
  48. Clark C, Smith W, Lochner A, Du Toit EF. The effect of gender and obesity on myocardial tolerance to ischemia. Physiol Res 2011;60:291-301. Go to original source... Go to PubMed...
  49. Piro M, Bona RD, Abbate A, et al. Sex-related differences in myocardial remodeling. J Am Coll Cardiol 2010;55:1057-1065. Go to original source... Go to PubMed...
  50. Regitz-Zagrosek V, Oertelt-Prigione S, Seeland U, Hetzer R. Sex and gender differences in myocardial hypertrophy and heart failure. Circ J 2010;74:1265-1273. Go to original source... Go to PubMed...
  51. Cavasin MA, Tao Z, Menon S, Yang XP. Gender differences in cardiac function during early remodeling after acute myocardial infarction in mice. Life Sci 2004;75:2181-2192. Go to original source... Go to PubMed...
  52. Oą»ádal B, Oą»ádalová I, Dhalla NS. Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Phys Rev 1999;79:635-659. Go to original source... Go to PubMed...
  53. Humphreys RA, Kane KA, Parratt JR. The influence of maturation and gender on the anti-arrhythmic effect of ischaemic preconditioning in rats. Basic Res Cardiol 1999;94:1-8. Go to original source... Go to PubMed...
  54. Wang M, Crisostomo P, Wairiuko GM, Meldrum DR. Estrogen receptor-alpha, mediates acute myocardial protection in females. Am J Physiol Heart Circ Physiol 2006;290:H2204. Go to original source... Go to PubMed...
  55. Song X, Li G, Vaage J, Valen G. Effects of sex, gonadectomy, and estrogen substitution on ischaemic preconditioning and ischaemia-reperfusion injury in mice. Acta Physiol Scand 2003;177:459-466. Go to original source... Go to PubMed...
  56. Crisostomo PR, Wang M, Wairiuko GM, et al. Postconditioning in females depends on injury severity. J Surg Res 2006;134:342-347. Go to original source... Go to PubMed...
  57. Lieder HR, Irmert A, Kamler M, et al. Sex is no determinant of cardioprotection by ischemic preconditioning in rats, but ischemic/reperfused tissue mass is for remote ischemic preconditioning. Physiol Rep 2019;7:e14146. Go to original source... Go to PubMed...
  58. Turcato S, Turnbull L, Wang GY, et al. Ischemic preconditioning depends on age and gender. Basic Res Cardiol 2006;101:235-243. Go to original source... Go to PubMed...
  59. Oą»ádalová I, Oą»ádal B, Kolář F, et al. Tolerance to ischaemia and ischaemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 1998;30:857-865. Go to original source... Go to PubMed...
  60. Hausenloy DJ, Kharbanda RK, Moller UK, et al. Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC--PPCI): a single-blind randomized controlled trial. Lancet 2019;394:1415-1424. Go to original source... Go to PubMed...
  61. Menazza S, Murphy E. The expanding complexity of estrogen receptor signaling in the cardiovascular system. Circ Res 2016;118:994-1007. Go to original source... Go to PubMed...
  62. Hutson DD, Gurrala R, Ogola BO, et al. Estrogen receptor profiles across tissues from male and female Rattus norvegicus. Biol Sex Differ 2019;10:1-13. Go to original source... Go to PubMed...
  63. Chen Q, Yager JD, Russo J. Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta 2005;1746:1-7. Go to original source... Go to PubMed...
  64. Gabel SA, Walker VR, London RE, et al. Estrogen receptor beta mediates gender differences in ischemia/reperfusion injury. J Mol Cell Cardiol 2005;38:289-297. Go to original source... Go to PubMed...
  65. Deschamps AM, Murphy E. Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. Am J Physiol Heart Circ Physiol 2009;297:H1806-H1813. Go to original source... Go to PubMed...
  66. Bopassa JC, Eghbali M, Toro L, Stefani E. A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2010;298:H13-H23. Go to original source... Go to PubMed...
  67. Knowlton AA, Lee AR. Estrogen and the cardiovascular system. Pharmacol Ther 2012;135:54-70. Go to original source... Go to PubMed...
  68. Sun J, Picht E, Ginsburg KS, et al. Hypercontractile female hearts exhibit increased S-nitosylation of the L-type Ca2+ channel alpha 1 subunit and reduced ischemia-reperfusion injury. Circ Res 2006;98:403-411. Go to original source... Go to PubMed...
  69. Lee TM, Su SF, Tsai CC, et al. Cardioprotective effects of 17 beta-estradiol produced by activation of mitochondrial ATP-sensitive K+ channels in canine hearts. J Mol Cell Cardiol 2000;32:1147-1158. Go to original source... Go to PubMed...
  70. Johnson MS, Moore RL, Brown DA. Sex differences in myocardial infarct size are abolished by sarcolemmal KATP channel blocade in rat. Am J Physiol Heart Circ Physiol 2006;290:H2644-H2647. Go to original source... Go to PubMed...
  71. Van Der Wall EE. Testosterone bad for men, good for women? Neth Heart J 2011;19:1-2. Go to original source... Go to PubMed...
  72. Parker MW, Thompson PD. Anabolic-androgen steroids: worse for the heart than we knew? Circ Heart Fail 2010;3:470-471. Go to original source... Go to PubMed...
  73. Jones TH, Kelly DM. Randomized controlled trials-mechanistic studies of testosterone and the cardiovascular system. Asian J Androl 2018;20:120-130. Go to original source... Go to PubMed...
  74. Maldonaldo O, Ramos A, Guapillo M, et al. Effects of chronic inhibition of testosterone metabolism on cardiac remodeling after ischemia/reperfusion-induced myocardial damage in gonadectomized rats. Biol Open 2019;8:1-7. Go to original source... Go to PubMed...
  75. Ghimire A, Bisset ES, Howlett SE. Ischemia and reperfusion injury following cardioplegic arrest is attenuated by age and testosterone deficiency in male but not female mice. Biol Sex Differ 2019;10:42-55. Go to original source... Go to PubMed...
  76. Mendelsohn ME. Molecular and cellular basis of cardiovascular gender differences. Science 2005;335:1583-1587. Go to original source... Go to PubMed...
  77. Ventura-Clapier R, Moulin M, Piquereau J, et al. Mitochondria: a central target for sex differences in pathologies. Clin Sci 2017;131:803-822. Go to original source... Go to PubMed...
  78. Murphy E, Steenbergen C. Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res 2007;75:478-486. Go to original source... Go to PubMed...
  79. Arieli Y, Gursahani H, Eaton MM, et al. Gender modulation of Ca 2+ uptake in cardiac mitochondria. J Mol Cell Cardiol 2004;37:507-513. Go to original source... Go to PubMed...
  80. Williams GS, Boyman L, Lederer WJ. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 2015;78:35-45. Go to original source... Go to PubMed...
  81. Halestrap AP, Richardson AP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/repefusion injury. J Mol Cell Cardiol 2015;78:129-141. Go to original source... Go to PubMed...
  82. Bernardi P. The mitochondrial permeability transition pore: a mystery solved? Front Physiol 2013;4:95. Go to original source... Go to PubMed...
  83. Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 2015;78:23-34. Go to original source... Go to PubMed...
  84. Alam MR, Baetz D, Ovize M. Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J Mol Cell Cardiol 2015;78:80-89. Go to original source... Go to PubMed...
  85. Cung TT, Morel O, Cayla G, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 2015;373:1021-1031. Go to original source... Go to PubMed...
  86. Morkuniene R, Arandarcikaite O, Ivanoviene L, Borutaite V. Estradiol-induced protection against ischemia-induced heart mitochondrial damage and caspase activation is mediated by protein kinase C. Biochim Biophys Acta 2010;1797:1012-1017. Go to original source... Go to PubMed...
  87. Pavon N, Martinez-Abundis E, Hernandez L, et al. Sexual hormones: effects on cardiac and mitochondrial activity after ischemia-reperfusion in adult rats. Gender difference. J Steroid Biochem Mol Biol 2012;132:135-146. Go to original source... Go to PubMed...
  88. Milerová M, Drahota Z, Chytilová A., et al. Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol Cell Biochem 2016;412:147-154. Go to original source... Go to PubMed...
  89. Drahota Z, Hlaváčková M, Oą»ádal B. Cardiac mitochondria and ischemia/reperfusion injury - sex differences. In: Oą»ádal B, Dhalla NS, eds. Sex Differences in Heart Disease. Switzerland: Springer, 2020:257-265. Go to original source...
  90. Milerová M, Charvátová Z, ©kárka L, et al. Neonatal cardiac mitochondria and ischemia/reperfusion injury. Mol Cell Biochem 2010;335:147-153. Go to original source... Go to PubMed...
  91. Bernardi P, DiLisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 2015;78:100-106. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.





Cor et Vasa

You are accessing a site intended for medical professionals, not the lay public. The site may also contain information that is intended only for persons authorized to prescribe and dispense medicinal products for human use.

I therefore confirm that I am a healthcare professional under Act 40/1995 Coll. as amended by later regulations and that I have read the definition of a healthcare professional.