Cor Vasa 2017, 59(2):e142-e148 | DOI: 10.1016/j.crvasa.2016.06.002

Impact of papillary muscles on ventricular function measurements in 3T cardiac magnetic resonance

Silvio Quick*, Nadine Waessnig, Philip Sommer, Felix M. Heidrich, Christian Pfluecke, Karim Ibrahim, Ruth Strasser, Uwe Speiser, Stefan Wiedemann
Technische Universität Dresden, University Hospital, Heart Center, Department of Internal Medicine and Cardiology, Dresden, Germany

Background: Prior studies revealed, that left and right ventricular (LV, RV) volume, mass and function differ significantly, depending on trabeculae papillary and papillary muscles (TPM) have been included or excluded in LV and RV calculations.

Methods: A cohort of 101 patients underwent CMR. It constituted of 26 patients without pathological findings in CMR (reference group), patients with ischemic cardiomyopathy (ICM), dilated cardiomyopathy (DCM) and patients with left ventricular hypertrophy (25 per group). Left and right ventricular parameters were determined using previously established methods: Method 1 inclusion and method 2 exclusion of TPM in cavity volume.

Results: Compared with inclusion of TPM, exclusion of TPM in the LV and RV cavity volume resulted in significantly lower end-diastolic and end-systolic volume (EDV, ESV) and myocardial mass, and larger stroke volume and ejection fraction (SV, EF) (p = 0.001). The fraction of the TPM on the LV and RV mass was highest in DCM (18.4 ± 3.8%,) and in CM (17.8 ± 3.2%) compared to the reference group (15.2 ± 2.5%, both p < 0.05), which resulted in a significant larger difference between the two methods (method 1 - method 2) in calculating ESV, EDV, SV, EF and myocardial mass among DCM and ICM patients vs. reference group.

Conclusion: Global CMR LV parameters are significantly affected by whether TPM are considered as part of the LV blood pool or as part of LV mass. Therefore, a consistent method of LV cavity delineation may be crucial during longitudinal follow-up to avoid misinterpretation and erroneous clinical decision-making.

Keywords: Cardiac MRI; Dilated cardiomyopathy; Ejection fraction; Hypertrophy; Ischemic cardiomyopathy; Papillary muscles; Trabeculae

Received: May 8, 2016; Revised: June 29, 2016; Accepted: June 29, 2016; Published: April 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Quick S, Waessnig N, Sommer P, Heidrich FM, Pfluecke C, Ibrahim K, et al.. Impact of papillary muscles on ventricular function measurements in 3T cardiac magnetic resonance. Cor Vasa. 2017;59(2):e142-148. doi: 10.1016/j.crvasa.2016.06.002.
Download citation

References

  1. A.A. Moss, The general electric-association of university radiologists radiology research academic fellowship: ten-year review, current status, and vision for the future, Academic Radiology 9 (2002) 1054-1055. Go to original source... Go to PubMed...
  2. R.B. Devereux, K. Wachtell, E. Gerdts, et al., Prognostic significance of left ventricular mass change during treatment of hypertension, Journal of the American Medical Association 292 (2004) 2350-2356. Go to original source... Go to PubMed...
  3. D. Levy, R.J. Garrison, D.D. Savage, et al., Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study, New England Journal of Medicine 322 (1990) 1561-1566. Go to original source... Go to PubMed...
  4. A.H. Mahnken, R.W. Gunther, G.A. Krombach, The basics of left ventricular functional analysis with MRI and MSCT, RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 176 (2004) 1365-1379. Go to original source... Go to PubMed...
  5. F. Grothues, G.C. Smith, J.C. Moon, et al., Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy, American Journal of Cardiology 90 (2002) 29-34. Go to original source... Go to PubMed...
  6. J.C. Moon, C.H. Lorenz, J.M. Francis, et al., Breath-hold flash and fisp cardiovascular MR imaging: left ventricular volume differences and reproducibility, Radiology 223 (2002) 789-797. Go to original source... Go to PubMed...
  7. E. Nagel, S. Kelle, E. Fleck, Indications for cardiovascular magnetic resonance imaging, Medizinische Klinik (Munich) 100 (2005) 219-225. Go to original source... Go to PubMed...
  8. M.B. Rominger, G.F. Bachmann, W. Pabst, et al., Left ventricular heart volume determination with fast MRI in breath holding technique: how different are quantitative heart catheter, quantitative MRI and visual echocardiography?, RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 172 (2000) 23-32. Go to original source... Go to PubMed...
  9. K. Alfakih, S. Plein, H. Thiele, et al., Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences, Journal of Magnetic Resonance Imaging 17 (2003) 323-329. Go to original source... Go to PubMed...
  10. S. Plein, T.N. Bloomer, J.P. Ridgway, et al., Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging, Journal of Magnetic Resonance Imaging 14 (2001) 230-236. Go to original source... Go to PubMed...
  11. J.W. Weinsaft, M.D. Cham, M. Janik, et al., Left ventricular papillary muscles and trabeculae are significant determinants of cardiac MRI volumetric measurements: effects on clinical standards in patients with advanced systolic dysfunction, International Journal of Cardiology 126 (2008) 359-365. Go to original source... Go to PubMed...
  12. B. Sievers, S. Kirchberg, A. Bakan, et al., Impact of papillary muscles in ventricular volume and ejection fraction assessment by cardiovascular magnetic resonance, Journal of Cardiovascular Magnetic Resonance 6 (2004) 9-16. Go to original source... Go to PubMed...
  13. B. Sievers, S. Schrader, P. Hunold, et al., Free breathing 2d multi-slice real-time gradient-echo cardiovascular magnetic resonance imaging: impact on left ventricular function measurements compared with standard multi-breath hold 2d steady-state free precession imaging, Acta Cardiologica 66 (2011) 489-497. Go to original source... Go to PubMed...
  14. L.E. Hudsmith, S.E. Petersen, J.M. Francis, et al., Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging, Journal of Cardiovascular Magnetic Resonance 7 (2005) 775-782. Go to original source... Go to PubMed...
  15. C.H. Lorenz, E.S. Walker, V.L. Morgan, et al., Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging, Journal of Cardiovascular Magnetic Resonance 1 (1999) 7-21. Go to original source... Go to PubMed...
  16. A.M. Maceira, S.K. Prasad, M. Khan, D.J. Pennell, Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance, European Heart Journal 27 (2006) 2879-2888. Go to original source... Go to PubMed...
  17. A.M. Maceira, S.K. Prasad, M. Khan, D.J. Pennell, Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance, Journal of Cardiovascular Magnetic Resonance 8 (2006) 417-426. Go to original source... Go to PubMed...
  18. C.J. Salton, M.L. Chuang, C.J. O'Donnell, et al., Gender differences and normal left ventricular anatomy in an adult population free of hypertension. A cardiovascular magnetic resonance study of the Framingham heart study offspring cohort, Journal of the American College of Cardiology 39 (2002) 1055-1060. Go to original source... Go to PubMed...
  19. J. Sandstede, C. Lipke, M. Beer, et al., Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging, European Radiology 10 (2000) 438-442. Go to original source...
  20. J. Schulz-Menger, D.A. Bluemke, J. Bremerich, et al., Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing, Journal of Cardiovascular Magnetic Resonance 15 (2013) 35. Go to original source... Go to PubMed...
  21. D.B. Longmore, R.H. Klipstein, S.R. Underwood, et al., Dimensional accuracy of magnetic resonance in studies of the heart, Lancet 1 (1985) 1360-1362. Go to original source... Go to PubMed...
  22. C.B. Higgins, Which standard has the gold? Journal of the American College of Cardiology 19 (1992) 1608-1609. Go to original source... Go to PubMed...
  23. N.G. Bellenger, M.I. Burgess, S.G. Ray, et al., Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable?, European Heart Journal 21 (2000) 1387-1396. Go to original source... Go to PubMed...
  24. E. Wu, R.M. Judd, J.D. Vargas, et al., Visualisation of presence, location, and transmural extent of healed q-wave and non-q-wave myocardial infarction, Lancet 357 (2001) 21-28. Go to original source... Go to PubMed...
  25. H. Engblom, G.S. Wagner, R.M. Setser, et al., Quantitative clinical assessment of chronic anterior myocardial infarction with delayed enhancement magnetic resonance imaging and QRS scoring, American Heart Journal 146 (2003) 359-366. Go to original source... Go to PubMed...
  26. F. Grothues, J.C. Moon, N.G. Bellenger, et al., Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance, American Heart Journal 147 (2004) 218-223. Go to original source... Go to PubMed...
  27. D.J. Pennell, U.P. Sechtem, C.B. Higgins, et al., Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report, European Heart Journal 25 (2004) 1940-1965. Go to original source... Go to PubMed...
  28. J.C. Lyne, D.J. Pennell, Cardiovascular magnetic resonance in the quantitative assessment of left ventricular mass, volumes and contractile function, Coronary Artery Disease 16 (2005) 337-343. Go to original source... Go to PubMed...
  29. D.S. Fieno, W.C. Jaffe, O.P. Simonetti, et al., Truefisp: assessment of accuracy for measurement of left ventricular mass in an animal model, Journal of Magnetic Resonance Imaging 15 (2002) 526-531. Go to original source... Go to PubMed...
  30. C.J. François, D.S. Fieno, S.M. Shors, J.P. Finn, Left ventricular mass: manual and automatic segmentation of true FISP and FLASH cine MR images in dogs and pigs, Radiology 230 (2004) 389-395. Go to original source... Go to PubMed...
  31. M.H. Drazner, D.L. Dries, R.M. Peshock, et al., Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study, Hypertension 46 (2005) 124-129. Go to original source... Go to PubMed...
  32. E.H. Estes Jr., F.M. Dalton, M.L. Entman, et al., The anatomy and blood supply of the papillary muscles of the left ventricle, American Heart Journal 71 (1966) 356-362. Go to original source... Go to PubMed...
  33. W.C. Roberts, L.S. Cohen, Left ventricular papillary muscles. Description of the normal and a survey of conditions causing them to be abnormal, Circulation 46 (1972) 138-154. Go to original source... Go to PubMed...
  34. M. Janik, M.D. Cham, M.I. Ross, et al., Effects of papillary muscles and trabeculae on left ventricular quantification: increased impact of methodological variability in patients with left ventricular hypertrophy, Journal of Hypertension 26 (2008) 1677-1685. Go to original source... Go to PubMed...
  35. M.B. Rominger, G.F. Bachmann, M. Geuer, et al., Accuracy of right and left ventricular heart volume and left ventricular muscle mass determination with cine MRI in breath holding technique, RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 170 (1999) 54-60. Go to original source... Go to PubMed...
  36. A.A. Young, B.R. Cowan, S.F. Thrupp, et al., Left ventricular mass and volume: fast calculation with guide-point modeling on MR images, Radiology 216 (2000) 597-602. Go to original source... Go to PubMed...
  37. P.M. Pattynama, H.J. Lamb, E.A. van der Velde, et al., Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis, Radiology 187 (1993) 261-268. Go to original source... Go to PubMed...
  38. G.H. Bardy, K.L. Lee, D.B. Mark, et al., Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure, New England Journal of Medicine 352 (2005) 225-237. Go to original source... Go to PubMed...
  39. R. Hoffmann, G. Barletta, S. von Bardeleben, et al., Analysis of left ventricular volumes and function: a multicenter comparison of cardiac magnetic resonance imaging, cine ventriculography, and unenhanced and contrast-enhanced two-dimensional and three-dimensional echocardiography, Journal of the American Society of Echocardiography 27 (2014) 292-301. Go to original source... Go to PubMed...
  40. S. de Haan, K. de Boer, J. Commandeur, et al., Assessment of left ventricular ejection fraction in patients eligible for ICD therapy: discrepancy between cardiac magnetic resonance imaging and 2D echocardiography, Netherlands Heart Journal 22 (2014) 449-455. Go to original source... Go to PubMed...
  41. T. Papavassiliu, H.P. Kühl, M. Schröder, et al., Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging, Radiology 236 (2005) 57-64. Go to original source... Go to PubMed...




Cor et Vasa

You are accessing a site intended for medical professionals, not the lay public. The site may also contain information that is intended only for persons authorized to prescribe and dispense medicinal products for human use.

I therefore confirm that I am a healthcare professional under Act 40/1995 Coll. as amended by later regulations and that I have read the definition of a healthcare professional.